Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication.
نویسندگان
چکیده
To assess the cell wall's role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare directly the effects of electroporation and sonication in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it nonspecifically disrupts cell-surface barriers.
منابع مشابه
Poly I:C Delivery into J774.1 & RAW264.7 Macrophages Induces Rapid Cell Death
Background: Cytosolic double-stranded RNA (dsRNA) is an important ‘molecular signature’ for the detection of intracellular viral infections. Although intracellular dsRNA is a known potent inducer of apoptosis, the optimal time and dose for the onset of dsRNA-mediated apoptosis have not been studied in detail. Objective: To perform an accurate temporal assessment of the cell death responses in d...
متن کاملRapid Delivery of Gold Nanoparticles into Colon Cancer HT-29 Cells by Electroporation: In-vitro Study
Background: Electroporation has become a routine technique for rapid drug delivery for the treatment of cancer. Because of its simplicity and wide range of application, it has been applied for the transfer of gold-nanoparticles and can facilitate entry into target cancer cells. Objective: The aim of this study is finding optimal conditions in order to obtain high GNPs- uptake and cell via...
متن کاملEffect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation
Introduction: Electroporation is a technique for increasing the permeability of the cell membrane to otherwise non-permeate molecules due to an external electric field. This permeability enhancement is detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the pulse strength threshold. In this study, the variabil...
متن کاملValidation of a Simple and Rapid Method for Assessment of Intracellular Bacterial Asparaginase
L-Asparaginase has remarkable properties which make it useful in dual pharmaceutical and food industries.In this study, simple and advantageous method has been validated for rapid and precise determination of intracellular L-Asparaginasein bacterial species. A suspension of bacterial cells was used instead ofcell extract and incubated by substrate (asparagine) after simple wash and centrifugati...
متن کاملOptimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line
Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasound in medicine & biology
دوره 33 11 شماره
صفحات -
تاریخ انتشار 2007